Skip to main content Contents Index
Prev Up Next \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 6.2 Projections (ON2)
Learning Outcomes
Subsection 6.2.1 Class Activities
Fact 6.2.1 .
Let \(W\) be a subspace of \(\IR^n\) and let \(\vec u\) be a vector in \(\IR^n\text{.}\) Then we can write \(\vec u\) uniquely as
\begin{equation*}
\vec u=\vec u_W+\vec u_{W^\perp}
\end{equation*}
where \(\vec u_W\) is the closest vector to \(\vec u\) on \(W\) and \(\vec u_{W^\perp}\) is in \(W^\perp\)
Definition 6.2.2 .
Let
\(W\) be a subspace of
\(\IR^n\) and let
\(\vec u\) be a vector in
\(\IR^n\text{.}\) The
orthogonal decompostion of
\(\vec u\) is the decomposition of
\(\vec u\) given by
Fact 6.2.1 . The
orthogonal projection of
\(\vec u\) is
\(\vec u_W\text{.}\)
Activity 6.2.3 .
Let \(W\) be a the \(xy\) -plane in \(\IR^2\text{.}\)
(a)
have them find a simple orthogonal decomposition
Fact 6.2.4 .
Let \(T:\IR^n\rightarrow\IR^m\) be a linear transformation with standard matrix \(A\text{.}\) Let \(W\) be the image of \(T\text{,}\) that is, \(W\) is spanned by the columns of \(A\text{.}\) Then for any \(\vec u\) in \(\IR^m\text{,}\) the matrix equation
\begin{equation*}
A^TA\vec x=A^T\vec u
\end{equation*}
is consistent, and \(\vec u_W=A\vec x\) for any solution \(\vec x\text{.}\)
Exercises 6.2.3 Exercises