Instead of unsubstituting \(u\) values for \(x\) values, definite integrals may be computed by also substituting \(x\) values in the bounds with \(u\) values. Use this idea to complete the following solution:
\begin{align*}
\displaystyle \int_1^3 x^2e^{x^3}\,dx &&\text{Let }&u=\unknown\\
&&&du = 3x^2\,dx\\
&&&\dfrac{1}{3}du = x^2\,dx\\
\displaystyle \int_1^3 x^2e^{x^3}\,dx &= \displaystyle \int_{x=1}^{x=3} e^{(x^3)} (x^2\,dx)\\
&= \displaystyle \int_{u=\unknown}^{u=\unknown} e^{u} \dfrac{1}{3}\, du\\
&= \left[\dfrac{1}{3}e^{u}\right]_{\unknown}^{\unknown}\\
&= \unknown
\end{align*}